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Limit cycles of a perceptron

M Schr̈oder and W Kinzel
Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Ẅurzburg,
Germany

Received 16 December 1997

Abstract. An artificial neural network can be used to generate a series of numbers. A Boolean
perceptron generates bit sequences with a periodic structure. The corresponding spectrum of
cycle lengths is investigated analytically and numerically; it has similarities with properties of
rational numbers.

In the last 15 years models and methods of statistical physics have successfully been used to
understand emergent computation of neural networks. Several properties of infinitely large
attractors and multilayer networks could be calculated analytically. Such systems of simple
units interacting by synaptic weights can be used as associative memory and classifiers; they
are trained by a set of examples, detect unknown rules and structures in high-dimensional
data, and store patterns in a distributed and content addressable way (Hertzet al 1991,
Watkin et al 1993, Opper and Kinzel 1996).

Another important application of neural networks is time-series analysis (Weigand 1993).
But only recently has statistical physics been used to model training and prediction of bit
sequences by a perceptron (Eisensteinet al 1995, Schr̈oderet al 1996). A neural network
is trained by a sequence of numbers; after the training phase the network makes predictions
on the rest of the sequence. In analogy to generalization the training and test data are
generated by a neural network, as well. It turns out that the generation of sequences of
numbers by a perceptron or multilayer network is already an interesting problem which
should be understood before prediction is investigated (Eisensteinet al 1995, Kanteret al
1995).

This problem is a special case of theneuronic equationsof Caianiello (1961). These
equations, which were suggested to model a neuron including time dependency, can only
be solved in special cases. Most work was done for one input and a memory back into
time with couplings that decrease exponentiallywi = ai (a < 1). Several analytic results
for the transients and the limit cycles of the resulting dynamics have been achieved for this
case (for example, Caianiello and Luca 1965, Cosnardet al 1988a). Not much work has
been done for other weights (for example, Cosnardet al 1988b, 1992). Our motivation for
studying this recursion equation is to examine the generalization ability and in a first step
the ability of a perceptron to generate time series. Hence we have no restrictions on the
weight vectora priori.

Numerical analysis of a perceptron with random weights generating sequences of
numbers shows that the sequences are related to the Fourier modes of the weight vector.
Therefore it is useful to study weight vectors with a single mode only. In this case an
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Figure 1. A perceptron learning a time series. The desired output of the perceptron (marked)
is the next bit of the series and therefore part of other input patterns as well.

analytic solution of a stationary sequence could be derived for large frequencies (Kanter
et al 1995).

This solution holds for continuous odd transfer functions, for example tanh(βx). As
a function of the slopeβ a phase transition to a nonzero sequence occurs. The phase of
the weight vector results in a frequency shift of the attractor. In this paper we wish to
extend this solution to infinite slopeβ and general frequencies, that is we derive an analytic
solution for the bit generator. We find a much richer structure of the bit sequences generated
by a Boolean perceptron compared with sequences of continuous ones.

A bit generator (figure 1) is defined by the equation

Sν = sign
N∑
j=1

wjSν−j (ν ∈ {0, 1, 2, . . .}) (1)

wherew ∈ RN is the weight vector of the perceptron of sizeN . Given an initial state
(S−N, . . . , S−1) ∈ {−1, 1}N , equation (1) defines a binary sequence(S0, S1, . . .) which has
to run into a periodic cycle of lengthL 6 2N . We try to find an analytic solution of the
periodic attractor. As mentioned, it is useful to restrict the weights to one single mode

wj = cos

(
2πq

j

N
+ πφ

)
(2)

with a frequencyq ∈ N and a phaseφ ∈ [0, 1[. Equation (1) may be expressed in terms of
the local fieldshν = 1

N

∑N
j=1wjSν−j :

hν = 1

N

N∑
j=1

cos

(
2πq

j

N
+ πφ

)
sign(hν−j ). (3)

We have to solve this self-consistent equation for the functionhν . Since simulations show
that limit cycles are dominated by one frequency, we assume sign(hν) is a periodically
alternating step function with frequencyk+ τ (with k ∈ N, τ ∈ [0, 1[), where the frequency
is defined for the variableν/N :

sign(hν) = sign

(
sin

(
2π
(k + τ)
N

ν

))
. (4)

In the case thatN is a multiple of 2(k + τ), i.e. for integer wavelengths, we found
an analytic solution of equation (1). It follows, using equation (4), that the right-hand
side of equation (3) is a periodic function with a period of lengthN/(k + τ) and that
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Figure 2. Internal field of the bit-generator,N = 1021, q = 11, φ = 0.25, k = 14,
τ = 0.180 556.

hν = −hν+N/(2(k+τ)) for ν ∈ {0, . . . , N
2(k+τ) − 1}. Our main result is

hν = 1

N sin( πq
N
)

sin( 1
2(T + 1)( πq

k+τ + π))
cos( πq

2(k+τ) )
sin

(
2πq

ν

N
+ φπ + T

2

(
πq

k + τ + π
)
+ πq
N

)

−


0 for T odd

+ 2

N
cos(φπ)+ sin(φπ − πq

N
)

N sin( πq
N
)

for T even
(5)

where we have abbreviatedT = [(k + τ)(2− 2ν/N)] using theGaussian bracket[x] that
denotes the closest integer less thanx. For φ = τ = 0 andk = q this results in

hν = 2k

N sin( πk
N
)

sin

(
2πkν

N
+ πk
N

)
. (6)

A sample function is plotted in figure 2. Note that it consists of two parts with the same
frequencyq. In the limit N → ∞ these parts are connected continuously. Equation (3)
gives the condition

hν > 0 ν ∈
{

0, . . . ,
N

2(k + τ) − 1

}
. (7)

Figure 3 shows the possible frequencies that satisfy condition (7) within our ansatz. Only
values ofk + τ = N/(2i) with integersi are possible with our ansatz.

For N → ∞ a necessary condition for equation (7) ish0 = 0. For k > q this
is sufficient so the nontrivial(hν 6≡ 0) solutions are given by the values ofτ, k that
fulfil the equation sin(φπ + (2k + 1)(πq/(2(k + τ)) + π/2)) = 0 which is equivalent
to q(2k + 1) = (k + τ)(2z − 2φ − 1) with an integerz. The frequenciesk + τ that are
allowed from this condition are also shown in figure 3.

We see that the analytic solution of the sequence generator with a continuous transfer
function (Kanteret al 1995) cannot just be extrapolated to the case of the bit generator.
The continuous generator, close to the transition point and fork � 1, hask = q andτ = φ,
whereas we find a spectrum of solutions withk > q andτ(q, φ, k), as shown in figure 3.

Up to now we have considered only integer wavelengths. Now we wish to discuss the
general case of arbitrary values ofq andφ. We wish to address two questions.
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Figure 3. Solutions of equation (3). Frequencyk+τ of the solution versus frequency plus phase
shift of the couplingsq + φ. Left-hand side:N = 10 000,k + τ = N/(2i) (i = 1, . . . , N/2).
Right-hand side: the limitN →∞.

Figure 4. Possible solutions of the bit generator. Frequencyk + τ of the solution versus
frequency plus phase shift of the couplingsq+φ. Comparison of the simulation (×: N = 443)
with the extrapolated analytic solution (lines).

(i) Do additional solutions consisting of one frequency exist?
(ii) What are the properties of the bit sequences?
We assume that there are solutions of the form (4) with general frequenciesk + τ for

a given system sizeN . As a function ofq + φ we numerically scan the output frequency
k + τ and determine the frequency of the limit cycle when the system was started with a
sequence of frequencyk + τ . Some of these initial states stay at stable states with almost
the same frequency; other ones run to the lowest branch (k = q). Random initial states
lead to the lowest branch with a very high probability. Figure 4 shows that the results of
this simulation are in agreement with the extension of our equations (5) and (7) to general
k + τ which leads to allowed regions for forq + φ as a function ofk + τ . For the lowest
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Figure 5. Cycle lengthL of the BG as a function
of the frequencyq + φ = r/s for N = 1024 (dots)
and numerator of(Ns)/r (squares). Fork = 251,
φ ∈ [0, 1[; only a part of the cycle lengths shown since
the highest observed cycle length was 8000.

Figure 6. τ as a function ofφ for N = 1024,
k = q = 251.

branchk = q the phaseφ of the weights results in a frequency shiftτ of the bit sequence,
with τ ≈ φ for q � 1 similar to the continuous case.

The next problem is to understand the lengthL of the stationary cycle generated by the
finite bit generator with one frequency in the couplings and a random initial vector. We
consider the caseq = k, only. Figure 5 shows the results of a numerical calculation of
equation (1) forN = 1024. ObviouslyL has a rich structure as the function of the phaseφ

of the weights. For 06 φ 6 1
2 each cycle has only one maximum in the Fourier spectrum

with frequencyq + τ(φ). The numerical results show that in this caseL is bounded by
the value 2N . Each value ofL belongs to a whole interval in theφ-axis, but only to a
single value ofτ . Hence, the functionτ(φ) has a step-like structure;τ is locked at rational
numbers as shown in figure 6. The size of the steps decreases with increasingN andr.

Can this structure ofL(τ) be understood from the extension of the analytic solution (5)?
For arbitrary values ofτ the sequenceSl is quasiperiodic, in general with an infinite period
L. However, if k + τ is rational,k + τ = r/s with integersr and s which are relatively
prime, then the periodL is given by the numerator ofNs/r. This means, thatL is the
smallest multiple of the wavelengthN/(k + τ) that is an integer. In fact, in figure 5 we
have plotted all of these values ofL for q + φ = r/s andL < 2N . ForL < N all of these
L values correspond to a cycle of the bit generator. ForN < L < 2N the bit generator
produces only even values ofL whereas the analytic argument gives all integersL.

For 1
2 < φ < 1 the bit-generator essentially produces the same structure ofL values as

for 0 < φ < 1
2. However, there are always a few solutions which are mixtures of several

modesk1+ τ1 andk2+ τ2, and which yield periods withL > 2N . For 0< τ < 1
2 we never

observed such mixtures of modes.
Note that the structure ofL(q+τ) is essentially determined by the properties of rational

numbers, which might be discussed in high-school mathematics. If the numeratorp is
plotted for each rational numberx = p/r in the unit interval, we obtain figure 7 (r < 800).
Hence, above each rational numberp/r a ceiling opens, below which no other values ofp

appear. Each ceiling has the form 1/|p− rx|. Low values ofr have a wide ceiling. These
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Figure 7. Numeratorp of the reduced fractionx = p/r (r < 800).

results, which determine the structure of the cycle lengths of the bit generator, may be well
known in number theory and nonlinear dynamics (circle map, winding number), but they
have skipped our attention so far.

The upper bound 2N of the cycle lengthL can be understood as follows. The analytic
solution (5), extended to general values ofk + τ , yields quasiperiodic bit sequences with
infinite cycle lengthsL = ∞ for irrational k + τ . However, each cycle length has to be
limited by the number of input strings for the deterministic bit generator, equation (1),
which givesL < 2N . The last argument opens a different possibility to calculateL from
equation (5). Let us start with the sequence(S0, S1, . . . , SN−1) given by the equation (5), of
the analytic solution. If a bit generator tries to follow this solution it can do so only if each
input string(Sl, Sl+1, . . . , Sl+N−1) has not occurred before. Hence, the first appearance of
a previous sequence

(Sl, Sl+1, . . . , Sl+N) = (Sl+L, Sl+L+1, . . . , Sl+L+N−1) (8)

defines a lengthL of a cycle in agreement with figure 5.
More insight can be achieved by examining the continued fraction expansion of

2(k + τ)/N :

2
k + τ
N
= 1

a1+ 1

a2+ 1

a3+ · · ·

ai ∈ N. (9)
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We define the expansion to orderi to besi and li to be the denominators thesi :

s0 = 0 l0 = 1

s1 = 1

a1
l1 = a1

s2 = 1

a1+ 1

a2

l2 = a1a2+ 1

s3 = 1

a1+ 1

a2+ 1

a3

l3 = (a1a2+ 1)a3+ a1

...
...

li = aili−1+ li−2.

(10)

If 2(k + τ)/N is of the forms1 = 1/a1 the lengthL of the cycles as a function ofN
can be given easily:

L =
{

1 for N < a1

2a1 for N > a1.
(11)

L is obviously limited by 2N.
For general 2(k+τ)/N the continued fraction expansion reveals a hierarchy of ‘defects’,

each having a period ofli , in the periodic structure of the resulting sequence. This leads to
the the fact that for any length scale introduced byN , two identical subsequences of length
N with a distance less than 2N can be found.

As a consequence the perceptron locks, for a given frequencyk + τ , in cycles that
correspond to frequencies given by the continued fraction expansion of 2(k+τ)/N , truncated
at a certain depth. This explains the steps in figure 6.

Finally we point out similarities to the case of bit generators with exponentially decaying
weights and additional bias (Cosnardet al 1988a). In this case one finds cycles which are
limited by N + 1. All of the cycles can be classified by rational numbersr/L whereL is
the length of the cycle,L 6 N + 1 andr is the number of positive bits in the cycle.

In summary, we have obtained an analytic solution for the cycles of a bit-generator with
periodic weight vectors. We found a whole spectrum of periodic attractors; the frequencies
k + τ depend in a complex way on the frequencyq and phaseφ of the weight vector of
the perceptron.

Numerical simulations showed that the bit sequences relax into cycles with lengthsL,
which are smaller than 2N . The structure ofL as a function ofk + τ has been analysed
in terms of number theory. An analytic solution was given for certain frequencies; the
extension to the measured frequencies results in a similar structure of cycles.
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